
sdsl Cheat Sheet

Data structures
The library code is in the sdsl namespace. Either import the
namespace in your program (using namespace sdsl;) or
qualify all identifieres by a sdsl::-prefix.

Each section corresponds to a header file. The file is
hyperlinked as part of the section heading.

We have two types of data structures in sdsl. Self-contained
and support structures. A support object s can extend a
self-contained object o (e.g. add functionality), but requires
access to o. Support structures contain the substring support
in their class names.

Integer Vectors (IV)
The core of the library is the class int_vector<w>.
Parameter w corresponds to the fixed length of each element
in bits. For w = 8, 16, 32, 64, 1 the length is fixed during
compile time and the vectors correspond to
std::vector<uintw_t> resp. std::vector<bool>. If w = 0
(default) the length can be set during runtime. Constructor:
int_vector<>(n,x,`), with n equals size, x default integer
value, ` width of integer (has no effect for w > 0).

Public methods: operator[i], size(), width(), data().

Manipulating int_vector<w> v

Method Description
v[i]=x Set entry v[i] to x.
v.width(`) Set width to `, if w = 0.
v.resize(n) Resize v to n elements.
Useful methods in namespace sdsl::util:
set_to_value(v,k) Set v[i]=k for each i.
set_to_id(v) Set v[i]=i for each i.
set_random_bits(v) Set elements to random bits.
mod(v,m) Set v[i]=v[i]modm for each i.
bit_compress(v) Gets x=maxiv[i] and `=dlog(x−1)e+1

and packs the entries in `-bit integers.
expand_width(v,`) Expands the width of each integer to `

bits, if ` ≥ v.width().

Compressed Integer Vectors (CIV)

For a vector v, enc_vector stores the self-delimiting coded
deltas (v[i+1]−v[i]). Fast random access is achieved by
sampling values of v at rate t_dens. Available coder are
coder::elias_delta, coder::elias_gamma, and
coder::fibonacci.

Class vlc_vector stores each v[i] as self-delimiting codeword.
Samples at rate t_dens are inserted for fast random access.

Class dac_vector stores for each value x the least (t_b− 1)
significant bits plus a bit which is set if x ≥ 2b−1. In the latter
case, the process is repeated with x′ = x/2b−1.

Bitvectors (BV)
Representations for a bitvector of length n with m set bits.
Class Description Space
bit_vector plain bitvector 64dn/64+1e
bit_vector_il interleaved bitvector ≈ n(1 + 64/K)
rrr_vector H0-compressed bitvector ≈ dlog

(n
m

)
e

sd_vector sparse bitvector ≈ m · (2+log n
m

)
hyb_vector hybrid bitvector
bit_vector equals int_vector<1> and is therefore dynamic.
Public Methods: operator[i], size(), begin(), end()
Public Types: rank_1_type, select_1_type, select_0_type1.
Each bitvector can be constructed out of a bit_vector object.

Rank Supports (RS)
RSs add rank functionality to BV. Methods rank(i) and
operator(i) return the number of set bits2 in the prefix [0..i)
of the supported BV for i ∈ [0, n].
Class Compatible BV +Bits Time
rank_support_v bit_vector 0.25n O(1)
rank_support_v5 bit_vector 0.0625n O(1)
rank_support_scan bit_vector 64 O(n)
rank_support_il bit_vector_il 128 O(1)
rank_support_rrr rrr_vector 80 O(k)
rank_support_sd sd_vector 64 O(log n

m
)

rank_support_hyb hyb_vector 64 -
Call util::init_support(rs,bv) to initialize rank structure
rs to bitvector bv. Call rs(i) to get rank(i) =

∑k<i
k=0 bv[k]

Select Supports (SLS)
SLSs add select functionality to BV. Let m be the number of
set bits in BV. Methods select(i) and operator(i) return the
position of the i-th set bit3 in BV for i ∈ [1..m].
Class Compatible BV +Bits Time
select_support_mcl bit_vector ≤0.2n O(1)
select_support_scan bit_vector 64 O(n)
select_support_il bit_vector_il 64 O(logn)
select_support_rrr rrr_vector 64 O(logn)
select_support_sd sd_vector 64 O(1)
Call util::init_support(sls,bv) to initialize sls to bitvector
bv. Call sls(i) to get select(i) = min{j | rank(j+1) = i}.

Wavelet Trees (WT=BV+RS+SLS)
Wavelet trees represent sequences over byte or integer
alphabets of size σ and consist of a tree of BVs. Rank and
select on the sequences is reduced to rank and select on BVs,
and the runtime is multiplied by a factor in [H0, log σ].
Class Shape lex_ordered Default Travers-

alphabet able
wt_rlmn underlying WT dependent ×
wt_gmr none × integer ×
wt_ap none × integer ×
wt_huff Huffman × byte X
wm_int Balanced × integer X
wt_blcd Balanced X byte X
wt_hutu Hu-Tucker X byte X
wt_int Balanced X integer X
Public types: value_type, size_type, and node_type (if WT is

traversable). In the following let c be a symbol, i,j,k, and q
integers, v a node, and r a range.
Public methods: size(), operator[i], rank(i,c), select(i,c),
inverse_select(i), begin(), end().
Traversable WTs provide also: root(), is_leaf(v), empty(v),
size(v), sym(v), expand(v), expand(v,r),
expand(v,std::vector<r>), bit_vec(v), seq(v).
lex_ordered WTs provide also: lex_count(i,j,c) and
lex_smaller_count(i,c). wt_int provides: range_search_2d.
wt_algorithm.hpp contains the following generic WT method
(let wt be a WT object): intersect(wt, vector<r>),
quantile_freq(wt,i,j,q), interval_symbols(wt,i,j,k,...),
symbol_lte(wt,c), symbol_gte(wt,c),
restricted_unique_range_values(wt,xi,xj,yi,yj).

Suffix Arrays (CSA=IV+WT)
Compressed suffix arrays use CIVs or WTs to represent the
suffix arrays (SA), its inverse (ISA), BWT, Ψ, and LF. CSAs
can be built over byte and integer alphabets.
Class Description
csa_bitcompressed Based on SA and ISA stored in a IV.
csa_sada Based on Ψ stored in a CIV.
csa_wt Based on the BWT stored in a WT.
Public methods: operator[i], size(), begin(), end().
Public members: isa, bwt, lf, psi, text, L, F, C, char2comp,
comp2char, sigma.
Policy classes: alphabet strategy (e.g. byte_alphabet,
succinct_byte_alphabet, int_alphabet) and SA sampling
strategy (e.g. sa_order_sa_sampling,
text_order_sa_sampling)

Longest Common Prefix (LCP) Arrays

Class Description
lcp_bitcompressed Values in a int_vector<>.
lcp_dac Direct accessible codes used.
lcp_byte Small values in a byte; 2 words per large.
lcp_wt Small values in a WT; 1 word per large.
lcp_vlc Values in a vlc_vector.
lcp_support_sada Values stored permuted. CSA needed.
lcp_support_tree Only depths of CST inner nodes stored.
lcp_support_tree2 + large values are sampled using LF.
Public methods: operator[i], size(), begin(), end()

Balanced Parentheses Supports (BPS)
We represent a sequence of parentheses as a bit_vector. An
opening/closing parenthesis corresponds to 1/0.
Class Description
bp_support_g Two-level pioneer structure.
bp_support_gg Multi-level pioneer structure.
bp_support_sada Min-max-tree over excess sequence.
Public methods: find_open(i), find_close(i), enclose(i),
double_enclose(i,j), excess(i), rr_enclose(i,j), rank(i)4,
select(i).
Call util::init_support(bps,bv) to initialize a BPS bps to
bit_vector bv.

https://github.com/simongog/sdsl-lite/blob/master
https://github.com/simongog/sdsl-lite/blob/master
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/vectors.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/int_vector.hpp
http://www.sgi.com/tech/stl/Vector.html
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/vectors.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/enc_vector.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/coder_elias_delta.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/coder_elias_gamma.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/coder_fibonacci.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/vlc_vector.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/dac_vector.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/bit_vectors.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/int_vector.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/bit_vector_il.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/rrr_vector.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/sd_vector.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/hyb_vector.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/rank_support.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/rank_support_v.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/rank_support_v5.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/rank_support_scan.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/bit_vector_il.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/rrr_vector.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/sd_vector.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/hyb_vector.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/select_support.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/select_support_mcl.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/select_support_scan.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/select_support_il.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/rrr_select_support.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/sd_select_support.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/wavelet_trees.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/wt_rlmn.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/wt_gmr.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/wt_ap.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/wt_huff.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/wm_int.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/wt_blcd.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/wt_hutu.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/wt_int.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/wt_algorithm.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/suffix_arrays.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/csa_bitcompressed.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/csa_sada.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/csa_wt.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/csa_alphabet_strategy.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/csa_alphabet_strategy.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/csa_alphabet_strategy.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/csa_sampling_strategy.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/csa_sampling_strategy.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/lcp.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/lcp_bitcompressed.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/int_vector.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/lcp_dac.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/lcp_byte.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/lcp_wt.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/lcp_vlc.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/vlc_vector.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/lcp_support_sada.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/lcp_support_tree.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/lcp_support_tree2.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/bp_support.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/bp_support_g.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/bp_support_gg.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/bp_support_sada.hpp

Suffix Trees (CST=CSA+LCP+BPS)
A CST can be parametrized by any combination of CSA ,LCP,
and BPS. The operation of each part can still be accessed
through member varaibles. The additional operations are
listed below. CSTs can be built for byte or integer alphabets.
Class Description
cst_sada Represents a node as position in BPS. Naviga-

tional operations are fast (they are directly trans-
lated in BPS operations on the DFS-BPS). Space:
4n+o(n)+|CSA|+|LCP | bits.

cst_sct3 Represents nodes as intervals. Fast construction,
but slower navigational operations. Space: 3n+
o(n)+|CSA|+|LCP |

Public types: node_type. In the following let v and w be nodes
and i, d, lb, rb integers.
Public methods: size(), nodes(), root(), begin(), end(),
begin_bottom_up(), end_bottom_up, size(v), is_leaf(v),
degree(v), depth(v), node_depth(v), edge(v, d), lb(v),
rb(v), id(v), inv_id(i), sn(v), select_leaf(i), node(lb,
rb), parent(v), sibling(v), lca(v, w), select_child(v, i),
child(v, c), children(v), sl(v), wl(v, c),
leftmost_leaf(v), rightmost_leaf(v)
Public members: csa, lcp.
The traversal example shows how to use the DFS-iterator.

Range Min/Max Query (RMQ)
A RMQ rmq can be used to determine the position of the
minimum value5 in an arbitrary subrange [i, j] of an
preprocessed vector v. Operator operator(i,j) returns
x = min{r| r ∈ [i, j] ∧ v[r] ≤ v[k] ∀k ∈ [i, j]}
Class Space Time
rmq_support_sparse_table n log2 n O(1)
rmq_succint_sada 4n+ o(n) O(1)
rmq_succint_sct 2n+ o(n) O(1)

Constructing data structures
Let o be a WT-, CSA-, or CST-object. Object o is built with
construct(o,file,num_bytes=0) from a sequence stored in
file. File is interpreted dependent on the value of num_bytes:
Value File interpreted as
num_bytes=0 serialized int_vector<>.
num_bytes=1 byte sequence of length util::file_size(file).
num_bytes=2 16-bit word sequence.
num_bytes=4 32-bit word sequence.
num_bytes=8 64-bit word sequence.
num_bytes=d Parse decimal numbers.
Note: construct writes/reads data to/from disk during
construction. Accessing disk for small instances is a
considerable overhead. construct_im(o,data,num_bytes=0)
will build o using only main memory. Have a look at this
handy tool for an example.

Configuring construction
The locations and names of the intermediate files can be
configured by a cache_config object. It is constructed by
cache_config(del,tmp_dir,id, map) where del is a boolean
variable which specifies if the intermediate files should be
deleted after construction, tmp_dir is a path to the directory

where the intermediate files should be stored, id is used as
part of the file names, and map contains a mapping of keys
(e.g. conf::KEY_BWT, conf::KEY_SA,. . .) to file paths.
The cache_config parameter extends the construction method
to: construct(o,file,config,num_bytes).
The following methods (key is a key string, config represenet
a cache_config object, and o a sdsl object) should be handy
in customized construction processes:
cache_file_name(key,config)
cache_file_exists(key,config)
register_cache_file(key,config)
load_from_cache(o,key,config)
store_to_cache(o,key,config)

Resource requirements
Memory: The memory peak of CSA and CST construction
occurs during the SA construction, which is 5 times the texts
size for byte-alphabets and inputs < 2 GiB (see the Figure
below for a 200 MB text) and 9 times for larger inputs. For
integer alphabets the construction takes about twice the space
of the resulting output.
Time: A CST construction processes at about 2 MB/s. The
Figure below shows the resource consumption during the
construction of a cst_sct3<> CST for 200 MB English text.
For a detailed description of the phases click on the figure.

This diagram was generated using the sample program
memory-visualization.cpp.

Reading and writing data
Importing data into sdsl structures
load_vector_from_file(v, file, num_bytes)
Load file into an int_vector v. Interpretation of file
depends on num_bytes; see method construct.

Store sdsl structures
Use store_to_file(o, file) to store an sdsl object o to file.
Object o can also be serialized into a std::ostream-object out
by the call o.serialize(out).

Load sdsl structures
Use load_from_file(o, file) to load an sdsl object o, which
is stored in file. Call o.load(in) reads o from
std::istream-object in.

Utility methods
More useful methods in the sdsl::util namespace:
Method Description
pid() Id of current process.
id() Get unique id inside the process.
basename(p) Get filename part of a path p.
dirname(p) Get directory part of a path p.
demangle(o) Demangles output of typeid(o).name().
demangle2(o) Simplifies output of demangle. E.g. removes

sdsl::-prefixes, . . .
to_string(o) Transform object o to a string.
assign(o1,o2) Assign o1 to o2, or swap o1 and o2 if the objects

are of the same type.
clear(o) Set o to the empty object.

Measuring and Visualizing Space
size_in_bytes(o) returns the space used by an sdsl object o.
Call write_structure<JSON_FORMAT>(o,out) to get a detailed
space breakdown written in JSON format to stream out.
<HTML_FORMAT> will write a HTML page (like this), which
includes an interactive SVG-figure.

Methods on words
Class bits contains various fast methods on a 64-bit word x.
Here the most important ones.
Method Description
bits::cnt(x) Number of set bits in x.
bits::sel(x,i) Position of i-th set bit, i ∈ [0, cnt(x)−1).
bits::lo(x) Position of least significant set bit.
bits::hi(x) Position of most significant set bit.
Note: Positions in x start at 0. lo and hi return 0 for x = 0.

Tests
A make test call in the test directory, downloads test inputs,
compiles tests, and executes them.

Benchmarks
Directory benchmark contains configurable benchmarks for
various data structure, like WTs, CSAs/FM-indexes
(measuring time and space for operations count, locate, and
extract).

Debugging
You get the gdb command pv <int_vector> <idx1> <idx2>,
which displays the elements of an int_vector in the range
[idx1, idx2] by appending the file sdsl.gdb to your .gdbinit.

c© Simon Gog
Cheatsheet template provided by Winston Chang
http://www.stdout.org/∼winston/latex/

Notes
1 select_0_type not defined for sd_vector.
2 It is also possible to rank 0 or the patterns 10 and 01.
3 It is also possible to select 0 or the patterns 10 and 01.
4 For PBS the bits are counted in the prefix [0..i].
5 Or maximum value; can be set by a template parameter.

https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/suffix_trees.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/cst_sada.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/cst_sct3.hpp
https://github.com/simongog/sdsl-lite/blob/master/tutorial/cst-traversal.cpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/rmq_support.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/rmq_support_sparse_table.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/rmq_succinct_sada.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/rmq_succinct_sct.hpp
https://github.com/simongog/sdsl-lite/blob/master/tutorial/csx-printf.cpp
https://github.com/simongog/sdsl-lite/blob/master/tutorial/csx-printf.cpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/config.hpp
https://github.com/simongog/sdsl-lite/blob/master/include/sdsl/config.hpp
https://github.com/simongog/sdsl-lite/blob/master
http://pizzachili.di.unipi.it/texts.html
http://simongog.github.io/assets/data/cst-construction.html
https://github.com/simongog/sdsl-lite/blob/master/examples/memory-visualization.cpp
https://github.com/simongog/sdsl-lite/blob/master
https://github.com/simongog/sdsl-lite/blob/master
https://github.com/simongog/sdsl-lite/blob/master
https://github.com/simongog/sdsl-lite/blob/master
https://github.com/simongog/sdsl-lite/blob/master
https://github.com/simongog/sdsl-lite/blob/master
http://www.json.org/
http://simongog.github.io/assets/data/space-vis.html
https://github.com/simongog/sdsl-lite/blob/master/test
https://github.com/simongog/sdsl-lite/blob/master/benachmark
https://github.com/simongog/sdsl-lite/blob/master/benchmark/indexing_count
https://github.com/simongog/sdsl-lite/blob/master/benchmark/indexing_locate
https://github.com/simongog/sdsl-lite/blob/master/benchmark/indexing_extract
https://github.com/simongog/sdsl-lite/blob/master/extras/sdsl.gdb

